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A B S T R A C T

Load patterns have a significant effect on the configuration of an energy system. With a smoother load profile,
the initial investment cost and operation and maintenance costs can be reduced. Adjustments in the area ratio of
different types of buildings during early planning stage can be useful in leveling the loads. However, there are
few studies till date on the guidelines for making such adjustments. This paper proposes a method to evaluate the
performance of load leveling. Before evaluation, the load profile is obtained using a method that combines
simulation and scenario analysis. Optimization of energy configuration for a typical case is conducted before and
after load leveling adjustment to demonstrate the benefits of load leveling.

1. Introduction

Load pattern have a significant influence on the configuration of an
energy system. Besides, the stability of heating and cooling loads is
important for the smooth operation of the energy system. In fact, the
more time the system operates at low part load ratios, the longer the
investment cycle is, and the poorer the economic performance is
(Lihui & Xiping, 2007). The difference between the peak and the valley
can be reduced by introducing different forms of energy on the supply
side. On the demand side, in the early stage of community planning the
loads pattern of the district buildings can be leveled by adjusting the
area ratio of the building types to have a smaller system capacity, lower
operation cost, and longer life cycle of the equipment. Load leveling
refers to the smoothing of the load profile by reducing the difference
between the on-peak and off-peak loads (Hemmati & Saboori, 2016).
However, few researchers have studied the adjustment principle, and
the determination of the area ratio of the buildings is very subjective.
Thus, this paper presents a method to evaluate the load levelling per-
formance in a community.

At present, community energy planning in China consists of elec-
tricity planning, heating planning, gas planning etc. There is no co-
ordination among these planning agencies. Thus, repetitive energy
planning happens, which leads to a large amount of waste
(Dengyun &Wenfa, 2011). Effective community energy planning

requires accurate prediction of community loads. Zhao and Magoulès
(2012) reviewed the prediction methods on building energy consump-
tion and proposed future prospects. Signor, Westphal, and Lamberts
(2001) developed a regression model with seven variables to predict the
electricity consumption in the offices in 14 Brazilian cities. Warnken,
Bradley, and Guilding (2004) focused on exploring the methods to re-
port the sector-wise energy consumption in the Australian tourist ac-
commodation industry. Javeed Nizami and ZAl-Garni (1995) developed
a two-layer feedforward neural network model to predict the electrical
energy consumption; the model was validated using seven-year mea-
sured data. Olofsson and Anderson (2001) predicted the annual energy
consumption for heating and internal use in six single-family buildings
using the ANN (artificial neural network) model. González and
Zamarreño (2005) forecasted hourly energy consumption in buildings
using the ANN model, with forecasted temperature, current load and
corresponding hours of the day as inputs. Al-Shammari et al. (2016)
used SVMs with FFA to predict the loads in district heating systems.
Shamshirband et al. (2015) applied adaptive neuro-fuzzy inference
system to predict the loads in district heating systems. Harb, Boyanov,
Hernandez, Streblow, and Müller (2016) developed grey-box models
and trained them with measured data to predict the thermal response of
buildings. Ferracuti et al. (2017) compared three data-driven models
for short-term prediction in real buildings, and found that they show
good accuracy at 15 min, 1 h and 3 h prediction periods.
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Ren, Paevere, and Mcnamara (2012) and Ren, Paevere, Grozev,
Egan, and Anticev (2013) built a database of prototypical models and
energy consumption, and applied the calibrated models to predict the
electricity consumption of end users in a residential sector. Shimoda,
Asahi, Taniguchi, and Mizuno (2007) and Shimoda, Yamaguchi,
Okamura, Taniguchi, and Yamaguchi (2010) also built detailed re-
sidential models to predict energy savings of energy-efficient mea-
surements and greenhouse emissions at the city scale. Garrido-Soriano,
Rosas-Casals, Ivancic, and Castillo (2012) adopted the scenario analysis
method to find out the energy saving potential, economic performance,
and greenhouse gas emissions. A comparison of the community load
prediction methods is presented in Table 1. It can be seen from the table
that the area load index method always leads to overestimation, while
the statistical prediction method requires huge amount of data. Pre-
sently, in China, one of the main reasons for the difficulty in load
prediction is the lack of required data. In most cases, only monthly or
annual energy consumption data are available.

An effective energy system configuration can help avoid energy
wastage and improve energy efficiency significantly. Sameti and
Haghighat (2017) reviewed current mathematical approaches and stu-
dies at the district level and discussed the present constraints. Seo,
Sung, Oh, Oh, and Kwak (2008) analyzed the economic performance of
a cogeneration system by building an individual mathematical model of
each residential building. Lozano, Ramos, Carvalho, and Serra (2009)
employed MILP (mixed integer linear programming) to optimize the
annual cost of a tri-generation system. Tveit, Savola, Gebremedhin, and
Fogelholm (2009) built multi-cycle mixed integer nonlinear models to
conduct economic optimization in a CHP system. Vesterlund, Toffolo,
and Dahl (2017) applied a hybrid evolutionary-MILP optimization al-
gorithm to meet the objective of achieving minimal total operating cost
of a multi-source district heating system. MILP was also adopted in
some other studies (Fazlollahi &Maréchal, 2011; Mehleri, Sarimveis,
Markatos, & Papageorgiou, 2012; Omu, Choudhary, & Boies, 2013) for
optimization purpose. Li, Mu, Li, and Li (2016) developed MILP models
of a distributed energy resource system to achieve optimal design and
operation and minimal CO2 emission. In Cocchi, Andreini, Cassitto,
Anatone, and Panone (2015), the optimization goal was to achieve the
lowest cost or CO2 emission of a CCHP plant. In Stoppato, Benato,
Destro, and Mirandola (2016), energy and thermal storage equipment
were taken into consideration while conducting optimization.

This paper proposes a quantitative index to assess load leveling
performance; a method to evaluate the levelling performance is also
proposed. Before conducting the evaluation, the community load is
predicted using a bottom-up approach that combines simulation with
scenario analysis. Besides, energy optimization is conducted using MILP
to demonstrate the benefits of load leveling in a typical case in
Shanghai.

The main objectives of this research are as follows.

1) To propose a method for community load prediction
2) To develop a quick calculation tool for community load prediction
3) To propose a method to evaluate load leveling performance
4) To conduct optimization of energy configuration of a typical case

before and after load leveling adjustment

2. Methodology

2.1. Load prediction

Owing to the absence of design parameters at the planning stage, an
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integrated method combining simulation and scenario analysis of load
prediction is presented.

Prototypical models are required to predict building loads when no
detailed information is available on the buildings at the planning stage.
Prototypical models represent the buildings’ form, scale, envelop, in-
ternal loads, and load pattern in the planning district (Han, Lin,
Shu, & Xiang-Li, 2012). They are crucial for load prediction, and di-
rectly influence the prediction accuracy and rationality. Modeling in-
formation is obtained mainly from three sources: planning information,
pertinent design regulations, and on-site investigations.

The only statistical data available at present are on energy con-
sumption, while load data are absent. Thus, with model calibration
regarding energy consumption, the model’s load output is considered to
represent the real building’s load profile.

The building scale is enlarged from an individual building to a
building block while performing community load prediction. Current
methods mainly add up only the load of each building, while there are
many other parameters that may influence the community load. A
modified formula considering microclimate, simultaneity usage coeffi-
cient, etc. is given below.

∑′ = =
=

α α α q SQ · · · (t 1, 2, 3...., 8760)t
j

n

jt j1 2 3
1 (1)

where:
Q′t is the community total hourly load, W;
qjt is the hourly load index per unit area of building type j, W/m2;
Sj is thetotal area of building type j, m2;
n is the total number of building types;
α1 is the correction for microclimate;
α2 is the simultaneity usage coefficient;
α3 is the correction for other factors.
At the planning stage, the building parameters such as building form

are not determined, and it is a complicated task to obtain the influence
of microclimate by modeling. It is necessary to find a method to
quantify the impact of microclimate, but this is not part of this study.

In practice, simultaneity usage coefficient is chosen most often
based on investigations or design manuals, and it is difficult to de-
termine its value. Merely adding up the hourly load of each building
would lead to overestimation of the total load. Hence, after building up
the prototypical models, scenario analysis is proposed to solve this
problem. Different scenarios of internal load intensity, envelope
thermal performance, and schedules can be set up. Considering the
probability of occurrence of each scenario, adding up the hourly load of
each scenario can yield the integrated hourly load; this solves the
problem of determining a proper simultaneity usage coefficient.

Owing to the large amount of influencing factors, complexity of the

Fig. 1. Flowchart for community building load pre-
diction.
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problem, lack of actual data, and limitation of the present studies, the
correction factors in this study are assumed to be 1.

The steps involved in this combined method can be seen from Fig. 1.
Firstly, representative energy consumption data from similar buildings
in a similar district are collected to serve as input for the model cali-
bration. The error between the measured data and simulated data is
often used to evaluate the simulation results. When the error is within
the stipulated range, the model is regarded as acceptable. The ranges of
acceptable errors are listed in Table 2 In this study, because of the lack
of monthly energy usage data, annual consumption data are used for
calibration. Thus, an annual error within±10% is considered accep-
table.

Prototypical models are built based on the parameters obtained
from the investigations. In this study, the input parameters of proto-
typical models are determined according to the national and local
building design regulations. Next, the models are calibrated using the
energy consumption data until the variations are brought within the
acceptable range. During calibration, simulation errors are considered
acceptable by adjusting the climate parameters, internal loads, HVAC
settings, air infiltration rate, non-HVAC system parameters, etc. Then,
different scenarios and their probabilities are set. Finally, when the area
of each building type is known, the community load can be calculated
using Eq. (1).

2.2. Load leveling

Till date, there is no specific definition of load leveling, and there
are no references on the method of adjusting the area ratio of different
building types. Thus, in this study, a definition of load leveling is cre-
ated, and suggestions are given for the area ratios of different building
types. The CBD (central business district, comprising offices, shopping
malls, and hotels) in Hongqiao, Shanghai is taken as an example to
study the load performance before and after leveling.

2.2.1. Definition
To evaluate the characteristics of the loads, it is firstly necessary to

obtain the load profile. By summing up the products of hourly load
index (W/m2) and the area ratio of each prototypical model under each
scenario, the community’s hourly load profile (W/m2) is obtained.

The load rate and peak-valley difference ratio are defined by Eqs.
(2) and (3), respectively. These terms are often used to present the
peak-valley characteristics and stability of the load profile (Nan, 2012).

=
average load

peak load
Load rate

(2)

− =
−peak load valley load

peak load
Peak valley difference ratio

(3)

The larger the load rate is, the higher the equipment utilization ratio
is. The smaller the peak-valley difference ratio is, the less the fluctua-
tion of the profile is, and the more stable the load is.

However, there are shortcomings in merely applying the load rate
and the peak-valley difference ratio. Firstly, the use of the peak-valley
difference ratio is limited, because when two curves have the same peak
and same valley, this ratio remains the same irrespective of the load
pattern. As for load rate, it can be seen from Fig. 2 that curve A and
curve B have the same load rate (and peak-valley difference ratio),
though curve A is more stable than curve B. Thus, these two indicators
have their limitations, and it is necessary to have a more comprehensive
evaluation parameter.

In statistics, both variance and standard deviation are used to
measure the degree of fluctuation of data. Standard deviation has the
same unit as the variable, and is therefore easier to understand than
variance. Thus, standard deviation is more frequently applied
(Probability and statistics, 2011).

The standard deviation (SD) is calculated as follows.

∑
=

−
=

x x

N
S

( )
i

N
i1

2

(4)

The aim of load leveling is to achieve a stable and balanced load
profile and to avoid frequent shifts between peaks and valleys. This
study employs SD to describe the load profile. The smaller the SD is, the
more stable the load profile is.

The standard deviations of the curve A is smaller than that of curve
B; this is consistent with the previously mentioned conclusion that
curve A is more stable. The authors assume that it is better to apply SD
to indicate the degree of load fluctuation. Further, by combining both
load rate and peak-valley difference ratio, a more comprehensive eva-
luation of the load profile can be performed.

Each community has its own load profile. During the planning stage,
the building area ratio can be adjusted based on the predicted load
profile to achieve better performance in terms of load leveling and peak
shifting.

2.2.2. Load levelling method
This study covers mainly the load leveling performance of a com-

munity that includes offices, shopping malls, and hotels with different
building area ratios. The schematic of the load leveling method is
shown in Fig. 3. Firstly, the community’s hourly loads can be calculated
using the method mentioned above. Then, the standard deviation of
each type of load, i.e., heating, cooling, and electricity is obtained.
These deviations are the data sets of fuzzy clustering. Next, according to
the outcome of fuzzy clustering, the building area ratios are classified
into three groups: good, fair, and poor. By considering the leveling
results of heating, cooling, and electricity loads, suggestions on building
area ratio are given.

2.2.3. Fuzzy clustering
In this study, different building area ratios are to be categorized into

three groups according to their standard deviation of each load type.
The boundary of each group is not quite clear; and fuzzy clustering is
applied to tackle with this. SPSS is used to conduct fuzzy clustering
analysis of load data (Jing, Shiqun, Chao, & Erbao, 2012; Xinbo, 1999).

The fuzzy clustering method partitions the collection of n elements
U = {u1，u2,…, un} into a collection of several fuzzy clusters with
respect to some given criteria. Each element consists of m data ui =
{xi1，xi2，…, xim} (i = 1, 2, …, n). The results of standard deviation
are clustered into three groups: good, fair, and poor.

The original data matrix of the n elements to be clustered is

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x x x
x x x

x x x

...

...
... ... ... ...

...

m
m

n n nm

11 12 1
21 22 2

1 2

The building area ratios are clustered with the corresponding
standard deviations being the elements’ data ui. Then, the original data
set is processed with the following steps: normalization, building

Table 2
Acceptable error ranges for model calibration (%).

China’s
technical code
(Code, 2009)

IPMVP
(PMVP,
2002)

ASHRAE
Guideline 14
(ASHRAE, 2002)

FEMP
(DOE
FEMP,
2000)

EERmonth ± 15 ±20 ±5 ±15
EERyear – – – ±10
CV(RMSEmonth) 10 5 15 10

EERmonth: monthly error.
EERyear: annual error.
RMSEmonth: monthly root mean squared error.
CV: coefficient of variation.
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similar matrix, and clustering (Xinbo, 1999).
To avoid the influence of data dimensions, the data have to be

normalized. The method of normalizing is shown below.

= −
≤ ≤ ≤ ≤

R x xRange: max maxj
i n

ij
i n

ij
1 1 (5)

⎜ ⎟=
⎧

⎨
⎪

⎩⎪

≠ ⎛
⎝

= …
= …

⎞
⎠

=

−
≤ ≤

x
i n
i m* if R 0 1, 2,

1, 2,

0.5 if R 0
ij

x x

R

min

j

j

ij ij
i n

j
1

(6)

Euclidean distance is applied to build the similar matrix =r u u( , )ij i j (i,
j = 1, 2, …, n).

The Euclidean distance is calculated as follows.

∑= −d x y x y( , ) ( )
i

i i
2

(7)

Then, the similar matrix is processed by clustering the two closest
samples into the same category.

2.3. Optimization of energy system configuration

In this part of the paper, we mainly focus on the optimization results
of energy configuration before and after load leveling. In this study, the
district energy system provides chilled water, heating water, electricity
to its serving district.

The problem of optimization of the community energy configura-
tion can be expressed as follows. In the planning stage, optimal

distribution of energy resources and a combination of energy conver-
sion techniques are used to achieve the optimal objective. The optimal
objective may be the minimum energy consumption or minimum cost,
while ensuring that the CO2 emissions meet the requirement.

At present, studies on community energy system mainly focus on
three aspects: economy, energy efficiency, and environmental protec-
tion, among which economy is used most often. In this study, the
minimum cost is taken as the goal of optimization.

The objective function is expressed as follows.

= + + + +MinC C C C C CTOT INV OM FUEL ElEC Carbon (8)

where
CTOT is the total cost;
CINV is the cost of initial investment of equipment;
COM is the operation and maintenance fee;
CFUEL is the fuel fee;
CELEC is the electricity fee;
CCarbon is the carbon emission tax.
In this study, the energy systems for cooling, heating, and electricity

are configured, and the influence of building area ratio on the energy
system configuration is also studied. The DER-CAM (Distributed energy
resources customer adoption model) is used to perform optimization of
the configuration.

LBNL has been developing the DER-CAM since 2000. The optimal
objective of the model is the minimum annual energy cost (electricity
cost, fuel cost, distributed energy system cost, and operation and
maintenance cost) keeping the CO2 emission to the minimum level.
DER-CAM can conduct optimization of single or multiple objectives and
determine the optimal capacity combination and the corresponding
operation strategy. DER-CAM applies MILP and the general algebraic
modeling system (GAMS) solver, whose energy flow diagram is shown
in Fig. 4.

The load models of DER-CAM include pure electricity load model,
cooling load model, heating load model, pure natural gas load model,
hot water load, etc. Besides, DER-CAM makes use of technologies such
as photo-thermal, photovoltaic, conventional/neo-type generator,
combined heat and power (CHP), thermal/electric storage, heat pump,
and absorption chiller (Stadler, Groissböck, Cardoso, &Marnay, 2014).
The input parameters are load data, energy price, etc. DER-CAM can
provide outputs in terms of the optimal capacity configuration, opti-
mized power generation, storage and operation method, electricity/fuel
cost, maintenance and operation cost, energy consumption, and CO2

emission. A schematic of DER-CAM’s inputs and outputs is shown in
Fig. 5.

3. Results and discussion

3.1. Load prediction

3.1.1. Building and calibrating prototypical building models
The prototypical building model is the key to load prediction, and

directly influences the prediction accuracy. The annual energy con-
sumption data of buildings with similar functions in the same district
must be collected; these data will be used for calibrating the model.

Prototypical models are not built based on real buildings, but are
defined only for those groups of buildings that can reflect the load and
energy consumption patterns in the specific district. In this study,
prototypical models are built and calibrated based on the information
from regulations and investigations, and simulation is conducted using
EnergyPlus. The detailed input information is listed in Table 3 and 4.

After building up the models, calibration is an important step. By
performing calibration, the models can be checked again, and their
representativeness and reliability can be ensured. The preliminary input
parameters are chosen mostly from the relevant design regulations, and
may deviate from the real data; hence, calibration is necessary. Owing
to lack of monthly energy consumption data, calibration can be done

Fig. 2. Two curves with the same load rate and peak-valley difference ratio.

Fig. 3. Schematic of load leveling.
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only based on the annual energy consumption and annual sub-metering
data. During calibration, the variations are brought within the accep-
table range by adjusting the climate parameters, internal loads, HVAC
settings, air infiltration rate, non-HVAC system parameters, etc. The
measured data are taken from Ref. Annual Report on China Building
Energy Efficiency (2009). It is assumed that the simulation results ac-
ceptable when the deviation is within±10% from the median value of

the measured data (ASHRAE, 2002).
The calibrated models can represent only the load and energy

consumption of current buildings, but when used for load prediction,
appropriate design requirements must be taken into consideration.
Thus, scenario analysis was adopted together with the design goal and
investigations on similar buildings to adjust the influencing factors such
as envelope thermal performance, internal loads, and operation

Fig. 4. DER-CAM energy flow diagram (Ghatikar, Mashayekh, Stadler, Yin, & Liu, 2016).

Fig. 5. DER-CAM’s input and output schematic (Anonymous, 2017).
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parameters, and predict the building loads under the integrated sce-
narios.

3.1.2. Tools for community load prediction
According to Shanghai Design Standard for Energy Efficiency of

Public Buildings (Code, 2012) and Design Code for Heating Ventilation
and Air Conditioning of Civil Buildings (Code, 2015), the scenarios of
occupant density, lighting intensity, and equipment intensity are de-
termined with three scenarios for each internal load. The scenario
settings are presented in Table 5.

After determining the settings for each scenario and the corre-
sponding probability, an integrated load index (W/m2) can be calcu-
lated. Then, knowing the area of each building type, the community’s
hourly load can be obtained. With this method of building an off-line
load database, a simple community load prediction tool was designed
using EXCEL VAB to calculate the hourly cooling, heating, and elec-
tricity loads. Fig. 6 shows the framework of the calculation tool.

In this tool, a load database of different prototypes under different
scenarios is built. For a specific building type, users can assign the
probability of occurrence of each scenario, and the integrated load
index will be calculated when the program is run. After entering the
value of the building area of each building type in the program, the
community’s hourly load is obtained.

Furthermore, more building types and more scenarios can be added
to obtain a more comprehensive database. Therefore, with this off-line
database, there’s no need to rebuild the models for prediction of com-
munity loads. Only the probability of occurrence of each scenario and
area of each building type need to be entered. Then, the predicted
values of the community’s hourly loads can be calculated.

3.1.3. Case study
In this section, the prediction tool is run for predicting Hongqiao

CBD’s cooling, heating, and electricity loads.
There are three energy stations planned to meet the load require-

ment of the CBD. The total building area is 3.12 million m2. The supply
area and building type of each energy station are listed in Table 6.

The main building types planned in this project are commercial
offices, commercial services, hotels, and apartment hotels. Thus, pro-
totypical models of offices, shopping malls, and hotels are applied in the
study.

Based on the functional orientation and experience of the CBD, the
probabilities of occurrence of the three scenarios for all the building
types are determined; these are listed in Table 7. For each building type,
the total probability of occurrence of the three scenarios sums up to 1.
For instance, for office buildings, the probabilities for scenarios 1, 2,
and 3 are 0.3, 0.4, and 0.3, respectively, which add up to 1. Then, the
integrated load index can be calculated by combining the values for the
scenarios.

After calculating the integrated load index, it is multiplied by the
area to obtain the hourly community load. The cooling season in
Shanghai is between May 16th and Oct. 15th, totaling 150 days, and the
heating season is from Dec. 1st to Mar. 15th, totaling 105 days. When
the load of each individual building is added, the correction factor will
be 1. The calculated data are presented in Table 8.

As can be seen from the table, different building types and areas
have different values of peak load and peak-load time. Thus, by com-
bining various building types and adjusting their building area ratios,
the community peak load can be shifted.

Part load ratio is used to analyze the annual hourly load; it is

Table 3
Information for prototypical models.

Type Office Shopping mall Hotel
Area 27428.6 m2 29575 m2 23316 m2

Shape coefficient 0.1 0.7 0.25
Window-wall ratio 0.5 0.5 0.5
Floors 12 1 floor underground, 7 floors aboveground 12
Story height 4m 3.5m Ground: floor 5, others: 3.5 m
Shading No No No
Orientation south south south
Building model visualization

Table 4
Envelop parameters of prototypical models.

Envelop U-value (W/(m2 K)
Roof 0.5
Exterior wall 0.8
Exterior window U-value 2.5

Shading coefficient (SC) 0.35
Solar heat gain coefficient (SHGC) 0.31

Table 5
Scenario settings of internal loads.

Building type Scenario type Occupancy
density

Lighting
intensity

Equipment
intensity

(m2/person) (W/m2) (W/m2)

Office 1 4 11 20
2 8 18 13
3 10 9 15

Shopping mall 1 3 12 13
2 4 19 13
3 8 10 13

Hotel 1 15 15 20
2 30 15 13
3 25 7 15
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calculated as follows.

= hourly load
peak load

Part load ratio
(9)

Based on the load prediction results, the part load ratios and

operation times of the energy stations are obtained; these are shown in
Figs. 7 and 8.

According to the part load ratio results, for over 80% of the oper-
ating time in the cooling season and for over 90% of the operating time
in the heating season, the part load ratio is under 50%. Thus, all the
energy stations operate at a low part load ratio, which contributes to
huge energy wastage. Besides, the load profile has great impact on the
energy system configuration and operation. The more time the system
operates at low part time ratios, the longer the payback period is. At the
supply side, multiple energy sources can be used to keep the system at
high efficiency. At the demand side, the area ratio of different building
types can be adjusted to level the loads profile and reduce the peak-
valley difference. Thus, load leveling performance plays a significant
role in energy system configuration and operation.

3.2. Load leveling

3.2.1. Sample data
In this study, three building types, i.e., offices, shopping malls, and

hotels are considered. Assume that ≤ ≤a a(0 1)i i is the building area
ratio of each building type, and that ai is a multiple of 0.1. For a specific
community, the total building area ratio of different building types adds
up to 1. Thus, there are 66 possible combinations (see Table 9). Then,
the annual average daily loads of heating, cooling and electricity are
obtained, whose standard deviations are calculated (see Table 9). With

Fig. 6. Program of community load prediction tool.

Table 6
Building types and supply areas of energy stations.

Energy
station

Project
progress

Offices (m2) Shopping
mall (m2)

Hotel (m2) Total (m2)

1# Stage 1 142 264.93 113 68.3 981 05.57 251 738.8
Stage 2 172 797.34 127 451.32 – 300 248.66
Stage 3 164 325 246 488 – 410 813
Sum 479 387.27 385 307.62 981 05.57 962 800.46

2# 435 667 401 271 – 836 938
3# 751 930 579 215 – 1 331 145

Table 7
CBD’s scenario settings.

Building type Office Shopping mall Hotel

Probability Scenario 1 0.3 0.3 0.3
Scenario 2 0.4 0.4 0.5
Scenario 3 0.3 0.3 0.2
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these data, load leveling is conducted.

3.2.2. Load levelling analysis
With the above SD results, fuzzy clustering can be performed to

categorize the results. Firstly, the SD results are normalized. For each of
the three loads, a matrix is obtained where the data of each element are
the normalized SD values. Then, similar matrices are built, and those
who are closest in Euclidean distance are clustered into one category.
All the results are clustered into three groups. The load leveling per-
formance of the clustered group with the smallest SD value (i.e., the
group with the smoothest and most stable load profile) is considered to
be good. Similarly, the group with the largest SD value is considered to
have poor performance, and the remaining group is considered to have
a fair load leveling performance.

The integrated clustering results and load leveling assessments are
presented in Table 10.

Because there are three assessing categories and three load profiles
in each building area ratio combination, there are totally nine types of
assessments. As can be seen from Table 10, Sample 26 (Office: 0.4,
Shopping mall: 0.2, and Hotel: 0 4 and Sample 27 Office: 0 5, Shopping
mall: 0 2, and Hotel: 0 3 show the best load leveling performance Thus,
the CBD’s building area ratio may be close to that of Sample 26 or
Sample 27.

Using the evaluation results, the load leveling performance of the
Hongqiao CBD can be assessed. The assessments are presented in
Table 11.

From the above table, it is clear that the building area ratio in
Hongqiao CBD can be optimized, especially the planning of energy
station 1# at stage 3, which shows poor load leveling performance in
both cooling load and electricity load. The building area ratio may be
adjusted based on the results of load leveling. However, the building
area ratio is closely related to the function and development of the
community, and hence it should be decided after considering all these
influencing factors. The building area ratios suggested in this study can
be considered only as a reference.

3.3. Optimization of energy configuration

In this section, the energy configuration for optimal economic per-
formance is obtained using DER-CAM. Moreover, optimization of en-
ergy configuration is conducted for the cases where the building ratios
are adjusted according to the load leveling suggestion given in Section
3.2. Optimization of energy station 1# is presented as an illustration.

3.3.1. Input data
As per the original plan, the building area ratio in Energy Station 1#

Table 8
Load index and peak load time of each building type and energy station.

Type Cooling load Heating load

Peak load W/m2 Time Peak load W/m2 Time

Office 77.39 Aug. 7th 14:00 54.85 Jan. 2nd 8:00
Shopping mall 105.93 Jul. 19th 12:00 33.8 Dec. 29th 9:00
Hotel 72.77 Jun. 29th 18:00 47.62 Dec. 20th 7:00
1# 1st stage 70.7 Jun. 29th 17:00 43.41 Jan. 2nd 8:00
1# 2nd stage 88.04 Aug. 7th 14:00 34.54 Jan. 2nd 8:00
1# 3rd stage 92.44 Aug. 7th 14:00 32.31 Jan. 9th 9:00
2# 90.5 Aug. 7th 14:00 33.28 Jan. 9th 9:00
3# 88.31 Aug. 7th 14:00 34.03 Jan. 2nd 8:00

Fig. 7. Part load operation time in cooling season for each energy station.
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for offices, shopping mall, and hotel is [0.5, 0.4, 0.1]. According to the
suggested building area ratios whose load leveling performances are the
best across all the three load types, the building area ratio of [0.5, 0.2,
0.3] is chosen as the case for comparison. In the two comparative cases,

the total building area is the same (see Table 12).
The annual loads of both cases are calculated. According the input

requirement of DER-CAM, the load profiles are divided into weekday
load, weekend load, and peak day load. The price of natural gas in

Fig. 8. Part load operation time in heating season for each energy station.

Table 9
Building area ratio combinations and standard deviation [Office: Shopping mall: Hotel].

Building area ratio SD-cooling W/m2 SD-heating W/m2 SD-electricity W/m2 Building area ratio SD-cooling W/m2 SD-heating W/m2 SD-electricity W/m2

1[0,0,1] 8.86 6.33 7.75 34[0.3,0.3,0.4] 13.46 3.66 6.18
2[0.1,0,0.9] 8.24 5.82 6.87 35[0.4,0.3,0.3] 13.88 3.7 6.05
3[0.2,0,0.8] 7.81 5.38 6.05 36[0.5,0.3,0.2] 14.42 3.91 6.1
4[0.3,0,0.7] 7.62 5.03 5.32 37[0.6,0.3,0.1] 15.07 4.26 6.34
5[0.4,0,0.6] 7.68 4.79 4.73 38[0.7,0.3,0] 15.81 4.71 6.74
6[0.5,0,0.5] 7.98 4.66 4.31 39[0,0.4,0.6] 14.95 3.94 7.72
7[0.6,0,0.4] 8.49 4.67 4.14 40[0.1,0.4,0.5] 15.06 3.61 7.26
8[0.7,0,0.3] 9.19 4.82 4.24 41[0.2,0.4,0.4] 15.3 3.43 6.93
9[0.8,0,0.2] 10.04 5.08 4.6 42[0.3,0.4,0.3] 15.66 3.42 6.75
10[0.9,0,0.1] 10.99 5.45 5.15 43[0.4,0.4,0.2] 16.13 3.6 6.75
11[1,0,0] 12.02 5.9 5.85 44[0.5,0.4,0.1] 16.7 3.93 6.91
12[0,0.1,0.9] 9.88 5.67 7.53 45[0.6,0.4,0] 17.37 4.38 7.22
13[0.1,0.1,0.8] 9.51 5.19 6.74 46[0,0.5,0.5] 16.98 3.5 8.05
14[0.2,0.1,0.7] 9.33 4.79 6.03 47[0.1,0.5,0.4] 17.19 3.26 7.7
15[0.3,0.1,0.6] 9.36 4.49 5.43 48[0.2,0.5,0.3] 17.5 3.21 7.49
16[0.4,0.1,0.5] 9.59 4.32 5 49[0.3,0.5,0.2] 17.91 3.34 7.43
17[0.5,0.1,0.4] 10.01 4.3 4.77 50[0.4,0.5,0.1] 18.42 3.65 7.52
18[0.6,0.1,0.3] 10.6 4.41 4.77 51[0.5,0.5,0] 19.01 4.09 7.76
19[0.7,0.1,0.2] 11.32 4.66 5.01 52[0,0.6,0.4] 19.1 3.18 8.49
20[0.8,0.1,0.1] 12.16 5.02 5.45 53[0.1,0.6,0.3] 19.37 3.07 8.25
21[0.9,0.1,0] 13.09 5.48 6.04 54[0.2,0.6,0.2] 19.74 3.16 8.15
22[0,0.2,0.8] 11.32 5.05 7.46 55[0.3,0.6,0.1] 20.19 3.43 8.18
23[0.1,0.2,0.7] 11.15 4.6 6.76 56[0.4,0.6,0] 20.73 3.85 8.35
24[0.2,0.2,0.6] 11.16 4.25 6.17 57[0,0.7,0.3] 21.28 3.02 9.03
25[0.3,0.2,0.5] 11.35 4.03 5.72 58[0.1,0.7,0.2] 21.61 3.06 8.89
26[0.4,0.2,0.4] 11.69 3.95 5.45 59[0.2,0.7,0.1] 22.01 3.29 8.87
27[0.5,0.2,0.3] 12.18 4.04 5.38 60[0.3,0.7,0] 22.5 3.68 8.98
28[0.6,0.2,0.2] 12.8 4.27 5.52 61[0,0.8,0.2] 23.5 3.05 9.64
29[0.7,0.2,0.1] 13.54 4.63 5.85 62[0.1,0.8,0.1] 23.87 3.23 9.59
30[0.8,0.2,0] 14.37 5.08 6.35 63[0.2,0.8,0] 24.31 3.58 9.65
31[0,0.3,0.7] 13.04 4.46 7.52 64[0,0.9,0.1] 25.75 3.26 10.32
32[0.1,0.3,0.6] 13.04 4.06 6.94 65[0.1,0.9,0] 26.16 3.55 10.34
33[0.2,0.3,0.5] 13.18 3.78 6.48 66[0,1,0] 28.03 3.61 11.06
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Shanghai is $0.47/m3, and the time-of-use electricity price is presented
in Table 13.

The commonly used equipment’s cost, maintenance cost, and
parameters are investigated (Feng et al., 2012) and listed in Tables
14–16.

3.3.2. Results of energy system configuration
Optimization of energy system configuration for both cases is con-

ducted using DER-CAM by solving for the optimal economic perfor-
mance. The calculated results of equipment capacity, energy con-
sumption, and total cost are listed in Tables 17 and 18.

Table 10
Evaluation results of cooling, heating and electricity load leveling performance [Office: Shopping mall: Hotel].

Sample Cooling load Heating load Electricity load Sample Cooling load Heating load Electricity load

1.[0,0,1] good poor fair 34.[0.3,0.3,0.4] good good fair
2.[0.1,0,0.9] good poor fair 35.[0.4,0.3,0.3] good good fair
3.[0.2,0.0,0.8] good fair fair 36.[0.5,0.3,0.2] good good fair
4.[0.3,0.0,0.7] good fair good 37.[0.6,0.3,0.1] good fair fair
5.[0.4,0.0,0.6] good fair good 38.[0.7,0.3,0.0] good fair fair
6.[0.5,0.0,0.5] good fair good 39.[0.0,0.4,0.6] good good fair
7.[0.6,0.0,0.4] good fair good 40.[0.1,0.4,0.5] good good fair
8.[0.7,0.0,0.3] good fair good 41.[0.2,0.4,0.4] good good fair
9.[0.8,0.0,0.2] good fair good 42.[0.3,0.4,0.3] good good fair
10.[0.9,0.0,0.1] good fair good 43.[0.4,0.4,0.2] good good fair
11.[1.0,0.0,0.0] good poor fair 44.[0.5,0.4,0.1] fair good fair
12.[0.0,0.1,0.9] good poor fair 45.[0.6,0.4,0.0] fair fair fair
13.[0.1,0.1,0.8] good fair fair 46.[0.0,0.5,0.5] fair good poor
14.[0.2,0.1,0.7] good fair fair 47.[0.1,0.5,0.4] fair good fair
15.[0.3,0.1,0.6] good fair good 48.[0.2,0.5,0.3] fair good fair
16.[0.4,0.1,0.5] good fair good 49.[0.3,0.5,0.2] fair good fair
17.[0.5,0.1,0.4] good fair good 50.[0.4,0.5,0.1] fair good fair
18.[0.6,0.1,0.3] good fair good 51.[0.5,0.5,0.0] fair good fair
19.[0.7,0.1,0.2] good fair good 52.[0.0,0.6,0.4] fair good poor
20.[0.8,0.1,0.1] good fair good 53.[0.1,0.6,0.3] fair good poor
21.[0.9,0.1,0.0] good fair fair 54.[0.2,0.6,0.2] fair good poor
22.[0.0,0.2,0.8] good fair fair 55.[0.3,0.6,0.1] fair good poor
23.[0.1,0.2,0.7] good fair fair 56.[0.4,0.6,0.0] poor good poor
24.[0.2,0.2,0.6] good fair fair 57.[0.0,0.7,0.3] poor good poor
25.[0.3,0.2,0.5] good good fair 58.[0.1,0.7,0.2] poor good poor
26.[0.4,0.2,0.4] good good good 59.[0.2,0.7,0.1] poor good poor
27.[0.5,0.2,0.3] good good good 60.[0.3,0.7,0.0] poor good poor
28.[0.6,0.2,0.2] good fair good 61.[0.0,0.8,0.2] poor good poor
29.[0.7,0.2,0.1] good fair fair 62.[0.1,0.8,0.1] poor good poor
30.[0.8,0.2,0.0] good fair fair 63.[0.2,0.8,0.0] poor good poor
31.[0.0,0.3,0.7] good fair fair 64.[0.0,0.9,0.1] poor good poor
32.[0.1,0.3,0.6] good good fair 65.[0.1,0.9,0.0] poor good poor
33.[0.2,0.3,0.5] good good fair 66.[0.0,1.0,0.0] poor good poor

Bold value in this table means that these two building area ratios are recommended because they show good load leveling performance.

Table 11
Load leveling performance of Hongqiao CBD.

Energy Station Project progress Office ratio Shopping mall area ratio Hotel ratio Assessment

1# Stage 1 0.6 0 0.4 Cooling load: good, Heating load: fair, Electricity load: good
Stage 2 0.6 0.4 – Cooling load: fair, Heating load: fair, Electricity load: fair
Stage 3 0.4 0.6 – Cooling load: poor, Heating load: good, Electricity load: poor

2# 0.5 0.5 – Cooling load: fair, Heating load: good, Electricity load: fair
3# 0.6 0.4 – Cooling load: fair, Heating load: fair, Electricity load: fair

Table 12
Comparison of original and adjusted cases.

Case Office (m2) Shopping mall (m2) Hotel (m2) Total (m2) Building area ratio [office: shopping mall:
hotel]

Assessment

Original 479,387 385,308 98,106 962,800 [0.5, 0.4, 0.1] Cooling load: Fair, Heating load: Good, Electricity load:
Fair

Adjusted 481,400 192,560 288,840 962,800 [0.5, 0.2, 0.3] Cooling load: Good, Heating load: Good, Electricity load:
Good

Table 13
Time-of-use electricity price.

Summer Time period Summer price
[$/kWh]

Non-summer price
[$/kWh]

Peak time 8:00–11:00 0.1805 0.1754
18:00–21:00

Flat time 6:00–8:00 0.1114 0.1062
11:00–18:00
21:00–22:00

Valley time 22:00–6:00 0.0431 0.0527
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The results reveal that the adjusted case requires lower equipment
capacity. Besides, the load profiles of the adjusted case are more stable
and better leveled, and the equipment operates at higher efficiency; this
contributes to a reduction in both electricity and natural gas con-
sumption.

3.3.3. Influence of load leveling on energy system configuration

1) Influence on system capacity

The peak loads of cooling, heating and electricity are listed in
Table 19:

It can be seen from the table that after the adjustment, the peak
loads of cooling, heating, and electricity change. The peak load of
cooling reduces by 10.24%, while that of electricity reduces by 16.88%.

The peak load of heating increases by 12.85%. In the adjusted case, the
capacity of the heat pump is 9.4% lower than that of the original case,
while the capacity of the absorption chiller is 16.2% lower. Thus, load
leveling affects the peak loads, which further influences the system
capacity. The more leveled the loads are, the smaller the capacity re-
quired is.

2) Influence on energy consumption

The adjusted case of energy station 1# shows 15.34% less usage of
natural gas and 8.35% less usage of electricity, which means 14.75%
cost saving compared with the original case. As the hourly load profile
changes influence the system operation, energy consumption and cost
vary. Equipment can operate at higher efficiency, which leads to energy
conservation. Besides, after the building area ratio adjustment, the
heat-to-power ratio is different, and hence the system equipment spe-
cification may also vary.

4. Conclusions and future work

1. Given that community energy planning involves many uncertainties,
an integrated method of load prediction in buildings is proposed,
which combines building simulation and scenario analysis.

2. Prototypical models of office, shopping mall, and hotel buildings in
Shanghai are built and calibrated. Using the proposed method and
scenario analysis, a load index database of various prototypical
buildings is obtained. Based on this database, a quick calculation
tool for community load prediction is developed; this tool is used to
predict cooling, heating, and electricity loads of a CBD in Shanghai.

3. By adjusting the area ratios of different building types in the com-
munity, the load profile could be changed. Further, load leveling is
defined, and the standard deviation of the load profile is used to
evaluate its performance. Fuzzy clustering of cooling, heating, and
electricity loads is conducted to categorize the load leveling per-
formance of each combination of building area ratios.

4. Suggestions on the community’s building area ratio selection are
given. The area ratios of [0.4, 0.2, 0.4] and [0.5, 0.2, 0.3] for offices,
shopping malls, and hotels show the best load leveling performance.

5. Optimization of energy configuration of the original plan and the
adjusted plan is conducted to find out the influence of load leveling.
The results show that adjustment of building area ratio to optimize
load leveling and energy configuration can not only improve the
energy efficiency of the community energy system, but also lead to
better economic performance.

Despite the merits of this study, some problems still exist, which
need to be tackled. Firstly, owing to lack in data of higher resolution,
the validation of prototypical models is not precise enough. With the
accumulation of data on energy consumption platform of China’s public
buildings, this problem can be solved in the future. Secondly, regional
microclimate creates uncertainties on the community’s building load,
and at the planning stage, parameters like building form are not de-
termined. Thus, the effects of microclimate on building load can hardly
be studied by modeling. It is still not known how to quantify the im-
pacts of microclimate. In the economic performance analysis, the
building’s location, construction cost, and distribution cost are not
considered; these aspects require further study.

Table 14
Initial investment cost of equipment.

Generator
($/kW)

Gas
boiler
($/kW)

Absorption
chiller
($/kW)

Electricity
chiller
($/kW)

Heat
pump
($/kW)

Equipment
investment
cost

367.85 29.43 132.43 103 103

Table 15
Maintenance cost.

Equipment Fixed cost ($/kW) Variable cost ($/kW)

Generator 0 0.0145
Gas boiler 0.3016 0
Absorption chiller 1.8245 0
Electric chiller 0.1824 0
Heat pump 0.1824 0

Table 16
Equipment parameters.

Equipment Parameter Value Life cycle (years)

Generator Efficiency 0.3 20
Heat-power ratio 1.48

Gas boiler Efficiency 0.9 20
Absorption chiller Cooling COP 1.2 15

Heating COP 0.9
Electric chiller Cooling COP 5.5 20
Heat pump Heating COP 5.0 10

Cooling COP 4.8

Table 17
Comparison of equipment configuration.

Equipment Original capacity (kW) Adjusted capacity (kW)

Internal combustion engine 25,000.00 25,000.00
Heat pump-cooling 309,510.30 280,430.70
heating 322,406.50 292,115.30
Absorption chiller 55,774.60 46,741.30

Table 18
Annual energy consumption and cost comparison.

Case Electricity consumption
(kWh/year)

Natural gas consumption
(kWh/year)

Total cost ($)

Original 75,778,026.80 185,926,691.80 21,916,940
Adjusted 69,453,575.60 157,407,890.20 18,684,754

Table 19
Peak load comparison.

Case Peak cooling load
(kW)

Peak heating load
(kW)

Peak electricity load
(kW)

Original 81689 32174 19907
Adjusted 73325 36918 16524
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